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Nonlinear propagation of signals in single-mode fibers is well understood, and is typically observed by measuring the
temporal profile or optical spectrum of an emerging signal. In multimode fibers, the nonlinearity has both a spatial and
a temporal element, and a complete investigation of the interactions between propagating modes requires resolving the
output in both space and time. We report here spatiotemporal measurements of a time-dependent mode interference
effect, arising from the Kerr nonlinearity, of two selectively excited LP0m modes of a step-index few-mode fiber. We
describe a method to selectively excite two propagating modes through the use of a phase mask directly patterned on the
entrance face of the fiber. The output is resolved by raster-scanning a near-field tapered single-mode optical fiber probe
that is connected to a high-speed detector. The results show that in the presence of nonlinearity, the output exhibits a
spatiotemporal character that cannot be adequately characterized by a camera image or pulse shape alone. © 2020

Optical Society of America under the terms of theOSAOpen Access Publishing Agreement

https://doi.org/10.1364/OPTICA.409060

1. INTRODUCTION

The rapid growth in demand for long-haul fiber-optic communi-
cation systems has fueled an interest in understanding nonlinear
optics in fibers, as nonlinear impairments are now understood to
be a critical feature that limits the transmission capacity of optical
networks [1,2]. In the face of ever-increasing bandwidth demand,
spatial division multiplexing (SDM) has emerged as a new frontier
to improve network capacity [3]. Although multimode fibers
(MMFs) pre-date single-mode fibers, nonlinear effects in MMFs
have received comparatively little attention, because until recently
MMFs had been primarily relegated to short-distance, low-power
links. As few-mode fibers (FMFs) and MMFs become more preva-
lent in longer-distance networks, and with the advent of techniques
for spatially multiplexed optical amplification [4], nonlinear effects
are expected to play an increasingly important role [5].

Multimode nonlinear optics is inherently more complex than
single-mode nonlinear optics because of the spatial degree of
freedom. Commercially available MMFs support a large number
(∼100 s) of transverse spatial modes, which gives rise to a variety
of intramodal and intermodal nonlinear interactions. A plethora
of spatiotemporal nonlinear phenomena have been uncovered
in recent experiments, including Kerr-induced beam cleanup
[6,7], multimode solitons [8], geometric parametric instability
[9], multi-octave spanning supercontinuum generation [10], and
spatiotemporal modulation instability [11]. Such phenomena are

of great interest not only from a fundamental science perspective,
but also in practical applications ranging from high-power beam
delivery and high-power fiber lasers to supercontinuum light
sources and optical metrology [12].

Here, we seek to address two key shortcomings in the way mul-
timode nonlinearity is measured and modeled. The first relates to
experimental measurement techniques. Traditional measurement
techniques, including spectral and temporal measurements of the
entire beam and spatial imaging using cameras, average over two
out of the three measurement axes (space, time, and spectrum). In
the most common type of measurements (spectral measurements
coupled with spatial imaging of the output), both the spectrum
analyzer as well as the CCD/CMOS camera average over many
pulses. As a result, many interesting dynamics that happen within
one pulse duration are missed, and the spatiotemporal nature of
multimode nonlinearity is not captured. We address this problem
by introducing a method for measuring the output MMFs and
FMFs in both space and time. Specifically, we raster-scan a near-
field scanning optical microscope (NSOM) tip in the near field of
the MMF/FMF output end-face, while collecting a time trace at
each spatial location. By stitching together the measured spatially
resolved time traces, we demonstrate the temporal evolution of
the instantaneous intensity profile within one optical pulse. Here,
we report a complete spatiotemporal measurement of the entire
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output beam, measured directly in the near field with a spatial
resolution of 400 nm.

Spatiotemporal and spatiospectral measurements of optical
beams, modes, and pulses is relevant in many areas in optics, and
several techniques have been developed to resolve a light beam in
space and time/spectrum simultaneously. Nicholson et al. report
spatially and spectrally resolved imaging, wherein spatially resolved
power spectral measurements are performed to characterize the
modal content of large-mode-area (LMA) MMFs [13]. Such a
technique is ideally suited for studying the nonlinear propagation
of short (femtosecond to picosecond) pulses in MMFs/FMFs.
Other techniques yield more information about the pulse, includ-
ing the phase of the electric field, and are also better suited for short
pulses (femtosecond to picosecond) [14–17]. Such techniques,
however, typically require interference with a reference beam,
thereby requiring careful alignment, as well as post-processing of
experimental data and are not direct measurements. In the broader
context of existing methods for spatiotemporal pulse characteri-
zation, the technique that we introduce here is ideal for directly
measuring the spatiotemporal intensity of multimoded long pulses
(nanosecond) with a spatial resolution exceeding the diffraction
limit.

There is growing recognition, backed by experimental measure-
ments, that the nonlinearity in MMFs is spatiotemporal in nature.
In [18], Krupa et al. used a small-area high-speed photodetector to
measure different temporal pulse profiles at different positions in
the collimated output beam from a graded-index MMF. In [19],
Krupa et al. used a small-area high-speed photodetector to measure
the temporal pulse profile at different positions in the collimated
output beam from a graded-index MMF to study supercontinuum
generation. In [20], Jing et al. employed spatiotemporal–spectral
compressed ultrafast photography to image dissipative solitons
in MMFs. More recently, a measurement technique similar to the
one presented here has been independently proposed, where a
single-mode fiber is scanned across the magnified output beam of
a graded-index MMF to demonstrate the spatiotemporal nature
of Kerr-induced beam clean-up [21,22]. The spatial resolution of
measurement techniques involving beam magnification, however,
is limited by diffraction, and the near-field measurement technique
presented here is capable of offering a much higher spatial resolu-
tion that could be especially useful for studying smaller-core-area
FMFs.

The second shortcoming we seek to address here relates to the
modeling of multimode nonlinearity. Currently, there exist two
complementary models of nonlinear propagation of optical pulses
in MMFs: the (3 + 1)D nonlinear Schrödinger partial differential
equation for the complex field envelope (also known as the Gross–
Pitaevskii equation), and the generalized multimode nonlinear
Schrödinger equations (GMM-NLSE) [23]. The nonlinear wave
equation is most efficient for numerically simulating the nonlinear
propagation of pulses when a large (∼100 s) number of modes are
excited [9], while the GMM-NLSE is best suited for studying and
numerically simulating propagation when the number of excited
modes is small (∼10 s). The GMM-NLSE treats optical nonlinear-
ity as acting at the modal level. The validity of the latter picture of
nonlinearity is of fundamental importance not only in establishing
a more complete understanding of multimode nonlinear effects
broadly, but also specifically in FMF-based SDM applications
where the number of co-propagating modes is small. To study this
problem, we choose a step-index FMF, and we further restrict the

already small number of allowed modes in FMFs by etching a phase
mask directly on the FMF input end-face by means of focused
ion-beam (FIB) milling. The phase mask restricts the number
of excited modes to the smallest non-trivial number possible:
two. Upon measuring the output of this system in space and time
simultaneously, we report the observation of a time-dependent
interference effect of the two propagating modes that is distinctly
spatiotemporal as well as nonlinear in nature. We then compare
our results with the predictions of the GMM-NLSE and its modal
treatment of nonlinearity.

2. SELECTIVE MODE EXCITATION

Under the weakly guiding approximation, a linearly polarized (LP)
optical signal with carrier frequency ω traveling in a few-mode
optical fiber can be represented as

E(r , φ, z, t)= x̂
∑

p

A p(z, t)ψp(r , φ)e i(βp z−ωt), (1)

where ψp(r , φ) represents an LP mode of the fiber, with corre-
sponding propagation constant βp , and A p(z, t) is the slowly
varying complex envelope. To simplify the notation, here, we
contract the azimuthal and radial indices (l ,m) into a single index
p that enumerates the LP modes.

For the experimental conditions considered here, we selectively
excite only the radially symmetric (LP0m) modes, which are given
by
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The propagation constantsβp and related values Up and Wp are
determined by requiring that ψp(r ) and ψ ′p(r ) are continuous at
the boundary r = a , and the normalization constant Np is chosen
so that |A p(z, t)|2 represents the instantaneous power carried by
the pth mode.

The step-index FMF considered in this work has a core diam-
eter 2a = 20 µm and numerical aperture of 0.14. At our laser
wavelength λ= 1064 nm, this fiber supports 17 LP modes, of
which three are radially symmetric: LP01, LP02, and LP03, which
we label p = 1, 2, and 3, respectively.

If the input face of the optical fiber is illuminated by a symmet-
rical, focused, linearly polarized, Gaussian optical beam described
by8(r )= exp(−r 2/w2), then a superposition of the radially sym-
metric modes will be excited, and the relative portion of power cou-
pled into each of these modes is

ηp ≡
|A p(z= 0, t)|2

P0(t)
=

∣∣∫ 8(r )ψp(r )dA
∣∣2∫

|82(r )|dA
∫
|ψ2

p(r )|dA
, (3)

where P0(t) represents the total power of the incident Gaussian
beam.

In Fig. 1, we plot the numerically calculated modal coupling
efficiencies ηp for the three radially symmetric modes as a function
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Fig. 1. Modal coupling efficiencies versus input beam radius. For beam
radii to the left of the dashed vertical line, the overall coupling efficiency
of light into the FMF falls off quickly. To maintain good overall coupling
efficiency, input beam radius must be larger than 2.3µm.

of input beam radius w, along with the total coupled power effi-
ciency, η1 + η2 + η3. The total coupled optical power decreases
well below unity for input excitations smaller than w= 2 µm,
because in this regime, the focused Gaussian beam exceeds the
numerical aperture of the fiber. From Fig. 1, one concludes that
with a simple Gaussian beam, it is not possible to excite one higher-
order mode exclusively, and more importantly, it is not possible
to selectively excite a combination of two modes with comparable
powers without also launching significant power in the third
mode. To best isolate and study the nonlinear interaction between
propagating modes, we seek a method for selectively, efficiently,
and exclusively exciting a pair of modes, which is impossible with a
simple Gaussian input beam.

Selective excitation of spatial modes has been previously
achieved using spatial light modulators (SLMs) [24,25] together
with projection optics. However, spatial modulators can be bulky
and difficult to align, and are prone to damage under the high
fluence illumination required to observe nonlinear optical effects.
Selective excitation of orbital angular momentum (OAM) modes
has also been achieved using forked diffraction gratings patterned
directly on the fiber end-face [26], but the diffraction efficiency can
significantly limit the coupled optical power, which again hinders
the observation of nonlinear optical effects. Here, we employ a
new method of directly imparting a binary phase pattern onto
the incident Gaussian beam by modifying the fiber end-face. Our
method is inspired by the thin-film deposition reported by Chen
et al. [27], but instead of depositing and patterning thin films onto
the input end-face, we directly etch a phase mask onto the input
end-face of the FMF using FIB milling.

Although SLMs allow for more flexibility, a phase mask directly
written onto the end-face of the fiber has significant advantages:
it is lighter, more robust, more compact, and has no need for relay
optics or alignment. It is also better suited for high-power nonlin-
ear optical applications and could be useful in spatially multiplexed
amplification schemes for future SDM systems. Phase masks on
fiber end-faces also find use in applications such as miniaturization
of optical elements, beam shaping for medical devices, generation
of OAM light, and particle trapping [28–31].

Patterning the end-face of an optical fiber has been achieved
using a variety of techniques such as photolithography, nanoim-
printing, e-beam lithography, two-photon polymerization, FIB
milling and thin-film deposition [32]. Here, we opt for FIB, as it is
a powerful and convenient prototyping tool, and does not require
the use of a photo-resist. Any of the other aforementioned litho-
graphic techniques can be employed to reproduce phase patterns
similar to the one described here.

Fig. 2. Graphical illustration of an FIB-patterned phase mask on the
input end-face of the FMF. The highlighted region at the center of the
core represents the region where SiO2 was removed in the milling process
(cladding diameter not to scale).

Although FIB milling permits nearly arbitrary spatial struc-
tures, we have found that a simple binary radial pattern provides
sufficient degrees of freedom to selectively and efficiently excite
two radial modes. Prior to fabrication, the FMF end-face is coated
with a 100 nm layer of Au:Pd alloy to make the sample conducting
to help mitigate charging effects during the milling process. An
accelerated beam of Ga+ ions is focused onto the FMF input end-
face to a spot size of 90 nm and raster-scanned to remove a centered
disc pattern of radius rm and depth dm , as shown in Fig. 2. Because
the core–cladding boundary is not discernable on the end-face
through electron microscopy, the focused ion beam write-pattern
was aligned to the fiber outer diameter. The removal of SiO2 in
the disc region imparts a phase difference 2(r ) to the near-field
coupled light, thereby creating a spatial phase mask described by

2(r )=
{
(n1 − 1) ωc dm, r ≤ rm

0, r > rm
. (4)

In the presence of a phase mask described by the function2(r ),
the launched modal coupling efficiencies are re-calculated to be

ηp =

∣∣∫ 8(r )e i2(r )ψp(r )dA
∣∣2∫ ∣∣82(r )

∣∣ dA
∫ ∣∣ψ2

p(r )
∣∣ dA

, (5)

where, as before,8(r )= exp(−r 2/w2). Figure 3 shows the calcu-
lated coupling efficiency for the three radial modes, as a function of
the two degrees of freedom (dm , rm), for a fixed input beam radius
ofw= 8.4 µm. The radius of the mask is varied from 0 to 10 µm,
while the depth of mask is varied from 0 to 1 µm (approximately
one wavelength). Regions of interest on this color map include
those that have negligible power in one mode and comparable
power in the other two. The chosen operating point is marked by
* (in green) in Fig. 3, at which the LP03 color map shows very low
coupling efficiency, while LP01 and LP02 color maps show com-
parable efficiencies. The calculated modal coupling efficiencies at
this point are η1 = 0.47, η2 = 0.31, and η3 < 0.01 for LP01, LP02,
and LP03 modes, respectively. The final result of this FIB milling

Fig. 3. Numerical calculation of modal coupling efficiencies as a
function of phase mask radius (rm) and depth (dm). The chosen operating
point marked by * in green is (r ∗m, d∗m)= (5.28 µm, 0.53 µm).
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Fig. 4. Scanning electron micrograph (SEM) of FMF input end-face
after FIB milling process. The darker disc at the center indicates the area
where milling was performed.

process is shown in the scanning electron microscopy (SEM) image
of the FMF input end-face shown in Fig. 4.

3. THEORY AND MODELING OF NONLINEAR
PROPAGATION

In single-mode fibers, pulse propagation in the presence of optical
Kerr nonlinearity is described by the NLSE. In MMFs and FMFs,
the single equation must be replaced by the GMM-NLSE—a set of
coupled partial differential equations that govern the evolution and
mixing of the mode amplitudes [23]. The equation governing the
pth mode amplitude is

∂A p

∂z
=−β ′p

∂A p

∂t
− i

β ′′p

2

∂2 A p

∂t2
+ i

∑
l ,m,n

γlmnp Al Am A∗ne i1βlmnpz, (6)

where β ′p and β ′′p are the first- and second-order Taylor series coef-
ficients of the propagation constantβp(ω) about the optical carrier
frequencyω, which relate to the group velocity and chromatic dis-
persion, respectively. The phase mismatch is given by

1βlmnp ≡ βl + βm − βn − βp , (7)

and the nonlinear coefficient governing the mixing between
modes is

γlmnp ≡
n2ω

c Almnp
, (8)

where n2 is the nonlinear refractive index, and Almnp is an effective
area:

Almnp ≡

√∫
|ψ2

l |dA
∫
|ψ2

m |dA
∫
|ψ2

n |dA
∫
|ψ2

p |dA∫
ψ∗l ψmψ∗nψp dA

. (9)

Earlier treatments of this problem [23] assumed a common
z dependence of e iβ0z for all modes in (1), which eliminates the
phase mismatch 1βlmnp, but instead introduces an additional
term i(βp − β0)A p on the right-hand-side of (6). The equiva-
lent formulation presented here is more convenient and easier to
numerically integrate for lower-peak-power quasi-CW optical
pulses. For the pulse duration and fiber length considered here,
the chromatic dispersion term can be safely ignored (β ′′p = 0),
and we can further ignore the differential group delay between
the interacting modes, i.e., we assume that β ′p are all equal. We
can also assume that the random linear mode coupling is negli-
gible. The fiber length over which random linear mode coupling is

negligible depends upon the spatial homogeneity of the fiber and
the mode spacing [33]. Prior experiments on MMFs observe that
an effective index separation 1neff ≥ 10−4 between propagating
modes results in negligible linear mode mixing over 10–100 m of
propagation [34,35]. In our experiment, the length of the fiber is
only 1.24 m, and the excited modes are separated in an effective
index from all other modes of the fiber by1neff > 3× 10−4.

For the FMF under consideration, there are 17 modes per
polarization state at λ= 1064 nm, and therefore, (6) represents a
set of 17 coupled nonlinear equations, with up to 174

= 83,521
nonlinear coupling coefficients γlmnp and phase mismatch terms
1βlmnp. Fortunately, many of the terms can be neglected due to
vanishing nonlinear coefficients and/or non-vanishing phase
mismatch 1βlmnp. Of the 174 possible combinations of {lmnp},
only 1807 terms (about 2%) have vanishing1βlmnp (i.e., are phase
matched). The smallest nonzero 1βlmnp is 9.15 m−1, which is
large compared to 1/L (where L is the fiber length considered in
our experiment). As a result, all of the terms with non-vanishing
1βlmnp average to zero over the length of the fiber [36]. Of the
1807 terms with vanishing 1βlmnp, 1200 also have a vanishing
γlmnp because of symmetry. This leaves only 607 of the 174 total
possible nonlinear terms remaining in the NLSEs. For the radially
symmetric modes, only the self- and cross-phase modulation terms
remain, and it is easy to prove that the modal power is conserved
during propagation (i.e., d |A2

1|/dz= d |A2
2|/dz= 0). Because we

selectively excite only these two modes at the input of the fiber, as
described in Section 2, we can safely ignore the cross-phase modu-
lation terms from all higher-order modes. As a result, the coupled
NLSEs simplify to

∂A1

∂z
+ β ′

∂A1

∂t
= i

(
γ1111|A1|

2
+ 2γ1212|A2|

2) A1, (10)

∂A2

∂z
+ β ′

∂A2

∂t
= i

(
γ2222|A1|

2
+ 2γ1212|A1|

2) A2, (11)

where the coefficients γ1111 and γ2222 describe self-phase modula-
tion, and γ1212 describes cross-phase modulation between the two
excited modes. These equations can be directly integrated, to yield

A1(L, τ )= A1(0, τ ) exp
[
i(γ1111|A1|

2
+ 2γ1212|A2|

2)L
]
,

(12)

A2(L, τ )= A2(0, τ ) exp
[
i(γ2222|A2|

2
+ 2γ1212|A1|

2)L
]
,

(13)
where τ ≡ t − β ′L is the retarded time. The spatial intensity
emerging at the end of the fiber is given by

I (r , z= L, t)=
1

2
nε0c |E(r , z= L, t)|2 (14)

=
1

2
nε0c

∣∣ψ1(r )A1(L, τ )e iβ1 L
+ψ2(r )A2(L, τ )e iβ2 L

∣∣2 (15)

=
1

2
nε0c P (τ )

[
η1ψ

2
1 (r )+ 2

√
η1η2ψ1(r )ψ2(r ) cos(1φ)+ η2ψ

2
2 (r )

]
,

(16)
where P (τ ) describes the optical pulse shape time, η1 and η2

denote the power excitation efficiencies of the LP01 and LP02

modes, respectively, and1φ is the power-dependent relative phase
shift between the two modes emerging from the fiber:



Research Article Vol. 7, No. 12 / December 2020 / Optica 1800

1φ(τ)= φ0 + [γ2222η2 + 2γ1212(η2 − η1)− γ1111η1] P (τ )L .
(17)

The phase offsetφ0 appearing in (17) refers to the unknown rel-
ative linear phase of the two modes emerging from the fiber, which
depends sensitively on the fiber length and the input relative phase
difference. We note, once again, that we have chosen to restrict the
number of excited modes in this study to n = 2 so as to simplify the
analysis and allow for a direct and quantitative comparison of the-
ory, simulation, and experiment. In the presence of n > 2 modes,
the number of cross terms in (16) would scale as n(n − 1)/2, which
is equal to the number of possible mode pairs. Each such cross term
would have a unique uncontrolled parameter [similar toφ0 in (17)]
that depends sensitively on the fiber length and the difference in
propagation constants of the mode pair. For n = 2, we have only
one such term, which greatly simplifies comparison of numerical
simulation and experimental observations, although the output
measurement technique presented in the following section does
not depend on the number of excited modes.

Because the transverse modes differ, the degree of interference
between them will be spatially dependent. Because the pulse shape
P (τ ) is time dependent, it produces a time-varying nonlinear
phase shift between the modes. These effects combine to produce
a spatiotemporal nonlinear pattern at the output end-face. If
the input pulse is Gaussian in time, it will split into two spatial
modes, which each acquire different nonlinear chirps, as the pulse
intensity rises and then falls. If the peak nonlinear phase differ-
ence approaches or exceeds π , the local intensity emerging from
the fiber will exhibit a pattern of temporal interference fringes
associated with the turn-on and turn-off of the pulse.

These broad predictions of the analytical model form a start-
ing point with which to compare the results of our numerical
simulations and experimental results. In the following sections,
we present our experimental setup and measurements, and com-
pare them with the numerical split-step Fourier method (SSFM)
simulations of (6).

4. EXPERIMENT

The experimental setup, as shown in Fig. 5, consists of a YAG
microchip laser (λ0 = 1064 nm) that produces 720 ps pulses at a
1 kHz repetition rate. The laser pulses have a maximum energy of
135µJ, and the energy of the pulses entering the FMF is controlled
by a half-wave plate (HWP) and polarizing beam splitter (PBS)
such that the input peak power is 15 kW. Using a plano-convex
lens of focal length f= 25.4 mm, the laser beam is focused to a spot
with radius 8.4 µm on the patterned input end-face of a 20 µm
step-index fiber with numerical aperture NA= 0.14 and length
L = 1.24 m. The length of the fiber is restricted to approximately
1 m for two reasons: first, the differential group delay between the
two excited modes per unit length of the fiber, given by (β ′1 − β

′
2),

is on the order of 10 ps/m at our laser wavelength. For the duration
of our pulse (720 ps), a fiber length of more than a few meters will
cause a significant walk-off between the peaks of the pulses in the
two spatial modes. For efficient nonlinear interaction, we desire
that the temporal walk-off between the two modes be minimal.
Second, as mentioned in Section 3, longer fiber lengths are more
prone to random linear mode coupling.

At the output end-face of the FMF, we employ an NSOM tip
that is brought in close proximity (� 1 µm) to the FMF end-face.
The NSOM tip has an aperture of 250± 50 nm, and tapers into a
single-mode fiber segment connected to a 10 GHz photo-receiver

Fig. 5. Experimental schematic for performing spatiotemporal mea-
surements of nonlinear interactions between selectively excited spatial
modes of an FMF. (a) A Gaussian beam of radius rg = 8.4 µm is inci-
dent on the patterned FMF input end-face; mask radius rm = 5.28 µm.
(b) Raster-scanned NSOM fiber tip for recording spatiotemporal mea-
surements at FMF output end-face; the separation between the FMF
end-face and NSOM tip is 1µm.

and recorded using a real-time oscilloscope. The resolution of the
temporal measurements is 100 ps, and is limited only by the band-
width of the photodiode used. The NSOM tip is scanned across
the output end-face of the FMF using a two-axis piezo-controlled
translation stage. Using this, we record the temporal output along
a 20 µm× 20 µm grid of pixels on the FMF output end-face at a
resolution of a 400 nm. We then reconstruct a temporal evolution
of the 2D intensity profile exiting the FMF end-face. It must be
noted that commercially available NSOM tips can have apertures
as small as 50 nm, which can be used to achieve spatial resolution
below 100 nm. For comparison, the diffraction-limited resolution
achievable using a high-magnification, high-numerical-aperture
(NA 0.75) microscope objective lens at λ= 1064 nm is given by
λ/2NA≈ 710 nm.

To minimize the timing jitter associated with the pulse gen-
eration and detection, we reflected 1% of the incident pulse to a
second high-speed photodiode, which was used to confirm the
pulse energy stability and trigger the oscilloscope.

5. RESULTS AND DISCUSSION

Figure 6(a) shows, for reference, the radial profiles of the two selec-
tively excited modes: LP01 and LP02. Figures 6(b)–6(d) show the
time-domain output recorded at three selected spatial locations:
r = 0 (on-axis), r = 4.4 µm, and r = 7.2 µm, respectively. We
observe interference fringes in the time domain arising from the
overlap, in time and space, of two modes that have acquired differ-
ent nonlinear chirps. Further, at the three selected values of r , the
two modes have different field amplitudes, leading to a different
time-domain pattern at each position r .

The temporal data are then used to reconstruct the 2D spatial
intensity pattern at the FMF output for time instances within one
pulse duration. By stitching together all of the time traces into a
mosaic of time-varying pixels, we construct what one would see
at the output with a picosecond resolution ultrafast video camera.
Figure 7 (Visualization 1 and Visualization 2) shows the output of
such a reconstruction at three different times during the pulse.

From (17), in the absence of nonlinearity, the output spa-
tial intensity profile is determined by the linear phase difference
φ0 acquired by the two modes during propagation. The beat
length between the LP01 and LP02 modes is approximately
1/(β1 − β2)= 89 µm, and because the fiber length L cannot

https://doi.org/10.6084/m9.figshare.12907325
https://doi.org/10.6084/m9.figshare.12907337
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Fig. 6. Spatially resolved temporal measurements: (a) radial amplitude
profiles of LP01 and LP02 modes; (b)–(d) output temporal measure-
ments at r = 0 (on-axis), r = 4.4 µm, and r = 7.2 µm. Input pulse peak
power is 15 kW.

Fig. 7. Spatiotemporal reconstruction of output pulse at FMF output
end-face. Output 2D spatial intensity profile (reconstructed from exper-
imental data) at three time instances within the pulse: t =−0.66 ns, t =
0, and t = 0.86 nm (see Visualization 1). Numerical simulation results are
shown in inset boxes (see Visualization 2).

be controlled or measured to this precision, we take the linear
phase offset to be an unknown numerical parameter. By fitting
the measured output beam shape at low power, we determine
φ0 = 0.58π .

As the pulse rises to its peak, the nonlinearity can no longer be
neglected, and the two modes acquire a time-dependent nonlinear
phase difference. Using (17), the peak nonlinear phase difference
the two modes acquire at the pulse peak (t = 0) is calculated to
be approximately equal to one π , based on the pulse power and
estimated modal coupling efficiencies.

This phase difference has two key manifestations. First, as
shown in Fig. 7, at t = 0, the on-axis spatial maximum observed a
low power is converted to an on-axis minimum, thereby converting
the Gaussian-like beam to an annulus-shaped beam. Second, at
the on-axis point, the same destructive interference of the modes
causes a local minimum at t = 0, resulting in the formation of the
temporal fringes as shown in Fig. 6(b).

As shown in Fig. 6(a), the LP02 mode ψ2(r ) changes sign
at r = 4.9 µm, which spatially alters the interference between
the modes: whenever the two modes interfere constructively

Fig. 8. FMF output recorded on a CMOS camera at low input power
at three different temperatures. As the temperature of an 18 cm long FMF
section is increased, the length of the core increases on the micrometer
scale due to thermal expansion, leading to a slightly different modal over-
lap at each temperature. As the temperature is swept from 50◦C to 150◦C,
the output intensity profile switches between a Gaussian-like shape and
an annulus, just as it did within one pulse duration in the presence of
nonlinearity.

(add) on-axis, they will interfere destructively (subtract) in the
region r > 4.9 µm, and vice versa. For the time traces collected at
r = 7.2 µm [Fig. 6(d)], we indeed observe a temporal maximum
at t = 0, in comparison to the local minimum observed at r = 0
[Fig. 6(b)]. This observation suggests that the nonlinear com-
ponent of the phase difference remains the same at both spatial
locations, which confirms the validity of the modal treatment of
nonlinearity.

The green curves in Fig. 6 show the numerically computed
output temporal intensity profile, obtained by solving (9), which
shows excellent agreement with the experimental measurements.
The inset images in Fig. 7 likewise show the numerically calcu-
lated spatial patterns at three different times within the pulse. The
numerical simulations assume a mode admixture of η1 = 0.47 and
η2 = 0.31, calculated from (5), and a phase offset of φ0 = 0.58π ,
which was separately determined by fitting the beam shape in the
low-power limit. Unlike the simplified treatment of (10) and (11),
the simulations included a small, calculated differential group
delay (β ′1 6= β

′
2), which results in the observed temporal asymmetry

in the output pulses.
To further verify that the observed spatiotemporal features

result from two-mode interference, we attenuated the laser, and
instead used a hot-plate applied to an 18 cm section of fiber, to ther-
mally adjust the linear phase differenceφ0 between the two modes.
Heating of the fiber changes both the refractive indices through
the thermooptic effect and the fiber length via thermal expansion.
The latter is believed to be the dominant effect that controls φ0.
Figure 8 shows the measured output field patterns, observed using
a CCD camera, at three different hot-plate temperatures, which
shows the cyclical progression of patterns from axial to annular and
back. This pattern is identical to what is occurs in time because of
self- and cross-phase modulation by the optical Kerr effect during
the Gaussian pulse.

The agreement among the predictions of our simplified
analytical model, numerical simulations of the complete GMM-
NLSE (6), spatiotemporal measurements, as well as thermal
measurements indicates the validity of the modal picture of
nonlinearity.

6. CONCLUSION

To probe the nonlinear interaction between two individual spatial
modes, it is desirable to preferentially excite only the modes of
interest. We achieved this using a novel implementation of a phase

https://doi.org/10.6084/m9.figshare.12907325
https://doi.org/10.6084/m9.figshare.12907337
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mask, which involves etching the mask directly onto the fiber input
end-face by means of FIB milling. While hard-writing a mask onto
the input end-face has the disadvantage of being less flexible as
compared to an SLM setup, it has some key advantages such as
compactness and ease of integration into chip-scale photonic cir-
cuits. Such a mask is also not prone to damage under the influence
of high laser power, and is a power-efficient way to excite a desired
mode combination. Phase masks etched onto fiber end-faces also
have numerous applications in beam shaping and miniaturization
of optical devices, and could be useful in spatially multiplexed
amplification schemes in future SDM systems.

We described a new measurement technique that employs
a raster-scanned NSOM tip to accurately measure the spa-
tiotemporal nonlinear dynamics within the duration of a single
pulse—which reveals patterns that are not possible to observe using
traditional CCD/CMOS cameras and optical spectrum analyz-
ers. For the case of two LP0m modes excited in a step-index FMF,
our measurements uncover a time-dependent mode interference
effect arising from nonlinear interaction between the two modes.
Specifically, we demonstrate the existence of interference fringes
in the time-domain output, as predicted by the GMM-NLSE.
Further, upon reconstruction using the raster-scanned measure-
ments, we see that the instantaneous intensity profile at the FMF
output end-face undergoes a time-dependent transformation.
These form the first complete spatiotemporal measurements of
multimode nonlinearity, to our knowledge.

The modal nature of multimode nonlinearity is confirmed
through numerical simulations, which match the observations.
The results are also consistent with observations obtained by ther-
mal tuning, confirming that the observed effects are caused by
mode interference.

The effects of optical nonlinearity in MMFs are fundamentally
spatiotemporal in nature. To best understand the physics of these
systems and the nonlinear dynamics that arise in them, a full (2 +
1)D diagnostic that can measure in both space and time (or fre-
quency) is required [37]. The near-field measurement technique
that we presented here serves as a promising tool with which to
better understand nonlinear optics in MMFs and FMFs.
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